Working with research materials

As soon as the idea of a diorama came to mind, I felt that the backdrop should reference the research project itself, not just the scientific concepts and phenomena that were the subject of the research. When I discussed this with the team, they were all enthusiastic, so I started working on the kinds of materials I wanted to include.

During my visit to the lab, I had been very struck by all the handwritten calculations that formed an active part of the experiments that I was viewing. For me, this not only references an important research activity, but the handwriting also emphasises the human hand involved in the process.

Andrew kindly agreed to provide me with some of his calculations.

I also wanted to use images of cells that forms a central part of the research, so trawled through a number of different types of microscopic images searching for the ones I thought would work as part of a diorama. My intention was to create a layering of information and data that reflected different parts of the research process and different stages of development of the project.

During various conversations with Paul and Tom we had talked about issues in scientific publishing. This was something I had an awareness of since my involvement with the Royal Society’s Research Culture project that had spawned the Museum of Extraordinary Objects, but it was brought home to me the critical role that science journals play in the dissemination of knowledge, and the complex and – to me – unsavoury considerations that can determine who gets to see the outcomes of research. As an independent researcher I am only too aware of the paywalls that inhibit people’s access to information and the high cost of getting hold of many articles. See this Guardian editorial if you want to be horrified by the economics of the science publishing industry model.

I was delighted that one of the articles that sets out the initial premises of the project was Open Access (although I was disturbed to learn that academic institutions have to pay publishers to have their articles Open Access). I determined this would form another element of the diorama backdrop.

I discussed with Paul the issues around editing and processing the research images to create the effects that I wanted, and he was sanguine with the images being changed as this was for the purposes of creating an artwork rather than for scientific purposes. So I set about processing the images and ended up with three elements for the backdrop.

The backdrop images were printed and mounted on transparent or translucent acrylic sheets. This mounting would allow different levels of visibility and layering from different angles and under different light conditions…


Once the vesicles were underway, one of the major considerations in creating the piece was the relationship between all the different elements. I had already, obviously, committed to creating the ‘vesicles’ and ‘z-stack’ at certain sizes and imagined them situated in relation to each other, but there was still quite a lot to be considered in getting the relationships right. There was also a lot of planning and experimentation in creating the fixings to hold the glass in position.

Once I had a sense of the sizing and spacing, I set to constructing the base and the stands that would hold the glass elements. I was also trying to take into account that the piece would need to travel from my studio to the hospital in Leeds, so my aim was to make the piece so that it could be deconstructed again for transport.

Meanwhile, the case I had ordered to contain the diorama had arrived. This meant that I could make sure that all the measurements I had made were accurate and that the base and the case would fit together properly.

The slats at the back of the base would hold the acrylic sheets used to mount the backdrop images. These had to be carefully measured so they would hold the sheets firmly in place.

Eventually the base was built, and I could mount the stands that I had created to hold the glass elements and acrylic sheets. At this stage, I was working with the acrylic sheets still in their protective wrap – that only came off close to completion as acrylic scratches very easily. In fact, the case for the piece has been treated with an anti-abrasive coating to try and minimise exterior scratching, although it can’t prevent it altogether.

And now, all that was left to do was to spray paint the base and mount all the interior elements!

Making vesicles

I knew from quite early on that I wanted my ‘natural history’ diorama for the peptide/membrane project to feature several globe forms which inspired by the vesicles / cell membranes under the influence of the peptide. (The peptide itself would be invisible – only detectable in its effects).

The vesicles were not intended to be a scientific representation, but more something between an evocation and an abstract sculpture. Having said that, there were a number of concepts that I had found really interesting from the time I spent in the lab that I wanted to inform the development of the vesicle elements, so I set about playing with ideas and techniques that would take on those ideas.

Creating Surface: While I was in meetings and labs with the team, I kept hearing about phase separation. In fact, to begin with i wasn’t sure if i was hearing about ‘phase separation’ or ‘face separation’, but that was soon cleared up! During my time in the labs i looked at images and heard more about this phenomenon in cell membranes and was fascinated by the confocal microscope images that illustrated it.

‘Spotty’ vesicle showing phase separation – image captured by Andrew Booth

I started to play with frit balls as a way of creating different surface effects within pate de verre. Frit balls are small granules of glass which are heated in the kiln to contract into little balls. I started to incorporate different sizes of frit balls into pate de verre samples in different ways – mixed in or adhering to the surface in groups. It was fun and I got some effects i really liked.

Once I had settled on some textures i liked, i started making vesicles. Initially I used rough textured spheres around which to make moulds, but I then moved onto using wax spheres that were smoother and easier to work with.

Colours: The first vesicle I made, i mixed up my colours and ended up with a vesicle with big pink patches which i hated. The plan had been for a much more subtle transition from white to a pale fleshtone, not only to evoke the biological but also in keeping with the overall palette that i’d talked to the Leeds team about, having seen the space and the way colours worked in the CRF area. This first patchy vesicle made a good test piece to try out the effects I wanted to develop using perforation, poration and metal mesh.

Through further experimentation and refining my process I finally got the three colours and textures of vesicles that I wanted.

The three final vesicles before I started drilling

Drilling: I decided to make the perforations in the vesicles by drilling into the globes rather than making the holes through the mouldmaking. Several reasons for this, including the likely strength of the ultimate vesicles and also the accuracy of the holes. I did, however, for the darkest vesicle, identify where i wanted the perforations to fall and created bulges around them as part of the model and mouldmaking process. Luckily the drilling went well and there were no breakages at that stage, which would have been heart-breaking as well as vesicle-breaking, as by this point, each vesicle represents many hours of work. Now they have been drilled, the white vesicle has no pores, the pale flesh vesicle has small pores, and the larger darker vesicle has extensive perforations.

So that, in a nutshell, was the development of the vesicle elements of the pieces. There’ll be more vesicle chat when I get to posting about the process of making the mesh elements that emerge through the perforations to create the overall effect of leakage, inspired by the action of the peptide…