Featured

Welcome to Glass Bodies

I am starting this blog at a strange time, with the world variously locked down in order to manage the spread of Coronavirus. Much of my art practice focuses on how we visualise health and disease in our bodies, often at a microscopic level. At present we are being bombarded with images with most news stories and programmes accompanied colourful and intricate representations of the virus, embellished to work well in the media environment. Implicitly or explicitly we are being invited to imagine the virus entering our own cells, with all that implies. If it weren’t all so grim, this would be a bonanza for an artist who is concerned with how we imagine disease at a cellular level.

Cell Portrait, Julie Light, 2018

But at the moment everything is, in fact, pretty grim, and I am hearing every day from friends and their families how badly affected they are by the virus or the measures in place to suppress it. So instead of dwelling on Coronavirus, just now I will be writing about the projects that I already have underway. And maybe I’ll come back to thinking about the visualisation of viruses in relation to my practice at a later date. (Who knows? At the moment, nothing is certain).

So, the two projects on my radar at the moment are also both about health and the body.

My main focus at present is a collaboration with researchers at Leeds University who are investigating the possibilities for using a membrane disrupting peptide to develop new cancer treatments. They have commissioned me to make an artwork inspired by their research which will take up residence at St James University Hospital in Leeds, ultimately in their new Clinical Research Facility. You’ll find most of my initial blogs are about how this project is developing, both in terms of learning some of the science from the very patient team in Leeds, to starting to make creative work.

My other project is at an earlier stage of development, although I have been thinking about it for longer. This is a project to create a body of artwork exploring the experience, incidence and implications of pressure ulcers. Incredibly prevalent, pressure ulcers are little talked about but have a fierce impact on those who experience them, and they can life-threatening to the elderly and vulnerable if their ulcers become severe.

Over the coming weeks and months, I shall be writing about my thoughts, research, creative exploration and development for these projects and maybe some others. I would love it if you would join me by subscribing, commenting, or just reading along and enjoying.

The Z Stack

As well as the vesicles, a major glass element of the sculpture was the Z Stack, as I like to call it. This is a form made from ‘slices’ of glass, each with a different colour or texture, that when mounted together suggest a three-dimensional form.

The Z Stack was an element that came to mind very early in the process during my visit to the labs, when Arindam explained to me how the images of the ‘spheroids’ of cells were constructed. The confocal microscope could be instructed to scan multiple layers of a three dimensional object, and would then build an apparently three dimensional image from the slices it had scanned. The number of scans that go into constructing the image would then affect the resolution of the object and also the time to create as well as the ultimate file size.

A non-glass mockup of a Z Stack – my first experiment with the idea

There are two main textural types of slice in the Z Stack – those with ‘miniature vesicles’ on the surface, and those which have a honeycomb structure. The honeycomb is the one reference in the piece to the original source of the peptide, the Amazonian wasp.

I wanted to create an analogue analogy for the Z stack, to create a 3D form from slices, and from that my Z Stack was born. Initially I thought it might be interesting to make the slices ‘floppy’ to accentuate the departure of the analogue from the digital counterpart, but aesthetically I found it confusing and cumbersome. I also wondered about offsetting some of the slices from the horizontal, but again this appeared to confuse the communication of the idea.

In the later stages of construction, I continued to experiment, but this time with the number of slices to see what worked best in creating an outline form. Below is the version with 9 slices.

I ultimately settled on 11 slices as giving the most pleasing form.

Working with research materials

As soon as the idea of a diorama came to mind, I felt that the backdrop should reference the research project itself, not just the scientific concepts and phenomena that were the subject of the research. When I discussed this with the team, they were all enthusiastic, so I started working on the kinds of materials I wanted to include.

During my visit to the lab, I had been very struck by all the handwritten calculations that formed an active part of the experiments that I was viewing. For me, this not only references an important research activity, but the handwriting also emphasises the human hand involved in the process.

Andrew kindly agreed to provide me with some of his calculations.

I also wanted to use images of cells that forms a central part of the research, so trawled through a number of different types of microscopic images searching for the ones I thought would work as part of a diorama. My intention was to create a layering of information and data that reflected different parts of the research process and different stages of development of the project.

During various conversations with Paul and Tom we had talked about issues in scientific publishing. This was something I had an awareness of since my involvement with the Royal Society’s Research Culture project that had spawned the Museum of Extraordinary Objects, but it was brought home to me the critical role that science journals play in the dissemination of knowledge, and the complex and – to me – unsavoury considerations that can determine who gets to see the outcomes of research. As an independent researcher I am only too aware of the paywalls that inhibit people’s access to information and the high cost of getting hold of many articles. See this Guardian editorial if you want to be horrified by the economics of the science publishing industry model.

I was delighted that one of the articles that sets out the initial premises of the project was Open Access (although I was disturbed to learn that academic institutions have to pay publishers to have their articles Open Access). I determined this would form another element of the diorama backdrop.

I discussed with Paul the issues around editing and processing the research images to create the effects that I wanted, and he was sanguine with the images being changed as this was for the purposes of creating an artwork rather than for scientific purposes. So I set about processing the images and ended up with three elements for the backdrop.

The backdrop images were printed and mounted on transparent or translucent acrylic sheets. This mounting would allow different levels of visibility and layering from different angles and under different light conditions…

Construction

Once the vesicles were underway, one of the major considerations in creating the piece was the relationship between all the different elements. I had already, obviously, committed to creating the ‘vesicles’ and ‘z-stack’ at certain sizes and imagined them situated in relation to each other, but there was still quite a lot to be considered in getting the relationships right. There was also a lot of planning and experimentation in creating the fixings to hold the glass in position.

Once I had a sense of the sizing and spacing, I set to constructing the base and the stands that would hold the glass elements. I was also trying to take into account that the piece would need to travel from my studio to the hospital in Leeds, so my aim was to make the piece so that it could be deconstructed again for transport.

Meanwhile, the case I had ordered to contain the diorama had arrived. This meant that I could make sure that all the measurements I had made were accurate and that the base and the case would fit together properly.

The slats at the back of the base would hold the acrylic sheets used to mount the backdrop images. These had to be carefully measured so they would hold the sheets firmly in place.

Eventually the base was built, and I could mount the stands that I had created to hold the glass elements and acrylic sheets. At this stage, I was working with the acrylic sheets still in their protective wrap – that only came off close to completion as acrylic scratches very easily. In fact, the case for the piece has been treated with an anti-abrasive coating to try and minimise exterior scratching, although it can’t prevent it altogether.

And now, all that was left to do was to spray paint the base and mount all the interior elements!

Making vesicles

I knew from quite early on that I wanted my ‘natural history’ diorama for the peptide/membrane project to feature several globe forms which inspired by the vesicles / cell membranes under the influence of the peptide. (The peptide itself would be invisible – only detectable in its effects).

The vesicles were not intended to be a scientific representation, but more something between an evocation and an abstract sculpture. Having said that, there were a number of concepts that I had found really interesting from the time I spent in the lab that I wanted to inform the development of the vesicle elements, so I set about playing with ideas and techniques that would take on those ideas.

Creating Surface: While I was in meetings and labs with the team, I kept hearing about phase separation. In fact, to begin with i wasn’t sure if i was hearing about ‘phase separation’ or ‘face separation’, but that was soon cleared up! During my time in the labs i looked at images and heard more about this phenomenon in cell membranes and was fascinated by the confocal microscope images that illustrated it.

‘Spotty’ vesicle showing phase separation – image captured by Andrew Booth

I started to play with frit balls as a way of creating different surface effects within pate de verre. Frit balls are small granules of glass which are heated in the kiln to contract into little balls. I started to incorporate different sizes of frit balls into pate de verre samples in different ways – mixed in or adhering to the surface in groups. It was fun and I got some effects i really liked.

Once I had settled on some textures i liked, i started making vesicles. Initially I used rough textured spheres around which to make moulds, but I then moved onto using wax spheres that were smoother and easier to work with.

Colours: The first vesicle I made, i mixed up my colours and ended up with a vesicle with big pink patches which i hated. The plan had been for a much more subtle transition from white to a pale fleshtone, not only to evoke the biological but also in keeping with the overall palette that i’d talked to the Leeds team about, having seen the space and the way colours worked in the CRF area. This first patchy vesicle made a good test piece to try out the effects I wanted to develop using perforation, poration and metal mesh.

Through further experimentation and refining my process I finally got the three colours and textures of vesicles that I wanted.

The three final vesicles before I started drilling

Drilling: I decided to make the perforations in the vesicles by drilling into the globes rather than making the holes through the mouldmaking. Several reasons for this, including the likely strength of the ultimate vesicles and also the accuracy of the holes. I did, however, for the darkest vesicle, identify where i wanted the perforations to fall and created bulges around them as part of the model and mouldmaking process. Luckily the drilling went well and there were no breakages at that stage, which would have been heart-breaking as well as vesicle-breaking, as by this point, each vesicle represents many hours of work. Now they have been drilled, the white vesicle has no pores, the pale flesh vesicle has small pores, and the larger darker vesicle has extensive perforations.

So that, in a nutshell, was the development of the vesicle elements of the pieces. There’ll be more vesicle chat when I get to posting about the process of making the mesh elements that emerge through the perforations to create the overall effect of leakage, inspired by the action of the peptide…

Working, working, working

It’s been a long while since I last posted – which is not to say that I haven’t been busy moving forward with the project, just that I’ve been focused on the studio rather than the laptop! So this and future posts will start to bring things up to date, slowly but surely, to the point where I am at present, with all the glass elements made and about to start construction of the piece in earnest.

The first major landmark since the last post was bringing the team up to speed in May with the way I wanted to go with the composition of the piece. Having settled on the idea of a natural history vitrine, I took them through my initial ideas for a diorama based around the developing perforation of a series of vesicles by the peptide.

I felt somewhat hampered by the necessity to have the conversation by Zoom rather than being able to talk in person and bounce about ideas and look at samples; we had initially imagined that I would go back to visit them in Leeds during May, but as lockdown was still very much in place, that was not an option. So Zoom it was.

I constructed a brief presentation to take Paul, Andrew and Arindam through my thinking and to show them some of the samples that I had been making. It culminated in a rough and ready construction collage of the basic elements of what I was proposing. Here are the slides from the presentation to give you a sense of what I was thinking. There’s no text, so it’s not totally self-explanatory, but it does give a sense of the elements that were coming together in my thinking in May.

We had some great chat as a result of talking through my ideas which have led to more concrete developments. Arindam uploaded some images for me from his research process – some spheroid experiments and some cell images – which i am working on to be a backdrop to the piece. Andrew has provided me with some more of his handwritten calculations, which I want to collage into the backdrop and possibly use in other ways.

In terms of my glasswork, we had some productive thoughts about my ‘Z stack’ element (my very rough prototype is in the image at the top of this post) – which I shall post about separately. We also talked about a potential ‘wasp nest’ element, but agreed that the emphasis needed to be on the science/ research rather than wasps. By the end of the conversation I felt things had definitely moved phase from ‘what am i making’ to ‘how will i make it’. So I went on from there to making vesicles – more of that to come soon!

Thinking about texture, surface and edges

When I was initially thinking about my approach to the Peptides project, before my first visit to Leeds to present my pitch for the project, I was thinking very much about metaphors for the process by which the peptide acts on cell walls. Here are a couple of slides from my pitch, outlining my thoughts:

Since starting the project for real, I’ve returned to those slides and that thinking to see how it might guide my approach now I am actively creating samples to help me shape the work. From the conversations with Paul about how the peptide acts on the cell membrane, I keep coming back to the word perforate. I also keep visualising the process expressed in this image below, from one of the slides that Paul shared with me quite early in our discussions on my research visit in March.

From this, and from the previous images of vesicles and cells through the microscope, I am developing a series of samples with different textures and qualities. So far the samples are not perforated, but more ‘frayed’ at the edges (they are quite small) but I envisage that I will develop more punctured surfaces when I scale things up.

Punctured surfaces and interesting edges also give me scope for another idea that I am developing, of wrapping edges in aluminium mesh to mirrors the process suggested above where the peptide seems to ‘edge’ the emerging perforations in the membrane….

Using mesh to wrap the inside and edges of a form. The beginnings of an approach?

The image here was a first experiment, using a complete form that I had to hand, but I will be experimenting further with edging and wrapping.

Creating and curating cabinets and vitrines

So, for those of you who have read my post on placing the artwork, you know that there are some major advantages to placing the artwork under glass (even if it is itself made of glass!).

I know that I don’t just want to make an artwork and pop it into a standard cabinet – often glass art does not fare well when placed inside a glass case. So my plan is to create an artwork where the cabinet or vitrine is an integral part of the piece.

When thinking about how to use cabinets or vitrines in this artwork, I am very much drawn to thinking about natural history exhibits. A lot of natural history museums in particular evolved complex settings for displaying their flora and fauna specimens in their vitrines during the late nineteenth century and enduring well into the twentieth century. This approach also spilled over into more general taxidermy.

Taxidermy display of Australian birds

Various artists are also known for using vitrines in their work. Here are examples from Carsten Holler, Anselm Kiefer, and an artist new to me Fiona Hall. They have used vitrines in different ways, creating types of taxonomy, mises en scenes and

Carsten Holler’s meditation on chanterelles and the colour orange.
Anselm Kiefer
Anselm Kiefer
Fiona Hall
Fiona Hall

Reviewing how curators, collectors and artists use of vitrines, some of the key things I know I want to think about going forward include:

  • Backdrop – coloured and or sandblasted
  • Drawing or writing on the case
  • Mise en scene inside the case – including narrative elements
  • Composition of main elements as specimens (or not)
  • Integrated lighting

I already have my eye on a specific vitrine / display case so am going to be thinking about those things in light of that….

Context, cleaning and cabinets – the practicalities of placing the artwork

While visiting St James Hospital, I spent some time in the Bexley Wing looking around where my artwork might be placed, both temporarily and on a more permanent basis.

The idea, if all goes according to plan, would be for the artwork to spend its first three months once completed in the Atrium Gallery of the Bexley Wing. This is an amazing, huge, high-ceilinged and light-filled space which already has a considerable number of artworks on display at any one time.

About the Atrium Gallery

Following that it will move to the Clinical Research Facility (CRF) which had just opened for business when I was on my visit to the hospital, although without inpatients. Chris and Debbie showed me around the space and pointed out a couple of options for where my artwork might be placed, depending on which I preferred and what kind of artwork i would be making. We also looked at what else would be in the space, including the lightboxes (the edge of one of which you can see below) and some watercolours which had been commissioned for and donated to the CRF.

A long flat wall if I am making wall based work
If i want to make something plinth, table or floor based, this area of around 1m x 1m would be an option, also with handy power source

While we were looking at the space, Chris also shared that the CRF might be converted into a coronavirus treatment unit if required by the hospital for providing care during the pandemic.

This heightened our existing awareness that the artwork would need to be easy to clean, or possibly sterilise, as well as allowing the walls / floors near it to be cleaned effectively. For that reason Chris and Debbie were both very much in favour of having the artwork housed in some sort of a cabinet that would allow for external cleaning without disturbing the piece itself, and would enable the artwork to be moved to allow the areas around it to be cleaned.

I hadn’t really considered the artwork being encased in any way up until that conversation. We had talked about the requirement for the artwork to be safe for patients and staff, and I had been thinking about how to finish rough or sharp edges so that they would not present any difficulties, as well as how the piece could be kept clean. But most of my creative ideas had to that point been for an installation where the component parts were not contained, and so this represented quite a change in creative direction for me to contend with.

I mulled for a short time about whether I could happily create a work which would conform to the necessary cleaning requirements without being held in any form of container or cabinet, but quite quickly decided that this would be both limiting and complex, determining what kind of finishes and materials that I could use – probably mainly shiny and smooth surfaces, which does not fit well with my usual aesthetic or approach.

However, constraints can be very positive, and my first thought was to find a way to make the ‘cabinet’ part of the piece itself, which would be an interesting and challenging way forward. My mind immediately went to my ‘Blood Morphology’ pieces which have integral bell jars containing the blood cells.

My Blood Morphology Series with their integral glass domes

Bell jars or glass domes would definitely be a possibility for this artwork, but currently i am much more drawn to the idea of specimen cabinets or vitrines, especially as I don’t want to find myself repeating myself. I will be doing some research about the aesthetics of specimen cabinets and vitrines as well as looking into other artists who have used these, and will post about that separately…

Labs, lipids, peptides and pores – what happened on day three

If you haven’t already read my account of days one and two, you might like to scroll down and start at the beginning of my trip. If you have, or like to start things in the middle, read on!

Day three of my visit saw me heading for St James University Hospital in Leeds, rather than the University. After I walked past a very picturesque Victorian chapel and restored Tom met me in the Wellcome Trust Brenner Building. This University building on the hospital campus houses many of the Biology researchers and their labs.

The Victorian Chapel at St James’ University Hospital in Leeds – rather more picturesque than the Wellcome Trust Brenner Building where i spent much of the day.

After a lightening tour of the labs and offices, Sarah gave me an induction about the basics of lab safely and etiquette for my role as an observer. I learned where and when to wear a lab coat, what not to touch (basically everything in the lab, including not leaning or propping my notebook on any lab surfaces), when to wear gloves and when to wash hands. With all the current advice, I have already got a lot more skilled at handwashing, so that stood me in good stead.

Arindam prepping samples

After that, I was handed into Arindam’s care. He had been prepping some experiments that we could run through the flow cytometer, part of the three day protocol that he had started before I even arrived in Leeds. The flow cytometer is an instrument which can differentiate very quickly between different cell states – which are tagged with different fluorescent labels – by passing them one by one through a narrow channel, shining a laser at them and assessing their luminosity, before chucking them back into the main sample. Amazing. Oddly, it made me think of counting sheep by making them jump over a gate.

Here are the innards of the flow cytometer – a symphony in blue.

The read out from the cytometer is shown in a graphic display on the cytometer’s monitor. Here we are looking at the percentage of cells that have died as a result of being treated with the MP1 peptide. The four box model on the screen shows living cells, early apoptosis, late apoptosis and necrosis after treatment with a particular peptide concentration.

The team are regularly working with a number of different cells line. There are four in particular that the team are using as their ‘core’ cell lines. Three of these are different breast cancer cell lines, and one is a ‘normal’ cell line (although modified so that it will continue to grow in a lab). I am really interested in how the cell lines were chosen and some of the complexities and ethics of working with cell lines, so expect to hear more about this in a separate post. My initial reaction, though, to the normal-but-immortal cell line is this: if what distinguishes a normal cell from a cancer cell is that is a cancer cell will grow and reproduce without being properly programmed to die, then the existence of a normal-but-immortal cell line is something of a conundrum – not a total contradiction but not straightforward either.

Dosing cells with MP1

Later in the day Arindam showed me some spheroids to be treated with the peptide which we could then view through the confocal microscope to see how the peptide affected cells in a 3D configuration. In the previous experiment, the cells had been standalone, but if you are to treat cancer effectively, you are much more likely to have to treat clusters of cells. Using the normal-but-immortal cell line, Arindam had prepared the spheroids of clusters of cells – apparently the cancer cell lines don’t make good spheroids, just random bunches of cells that aren’t useful for testing.

The confocal microscope
When the easiest place to record your calculations for the ‘z stack’ is your glove
The illuminated spheroid sample sitting in place under the microscope lens
An image captured from the animated z stack sequence – very low res as we didn’t have time to allow it to process a higher resolution version

After Arindam and I had looked at various spheroids treated with different amounts of peptide, I went to spend some time with Dagmara. Using a simple optical microscope, we looked at samples of GPMVs that she had been creating from all of the different cell lines.

Dagmara and the microscope.

Dagmara is studying for her PhD as part of the project. One of her priorities so far has been to develop ways to create GPMVs that can be used as part of the peptide testing process. GPMVs are, to me, like a halfway house between testing on GUVs (or LUVs) and testing with actual cell lines. A GPMV is a vesicle created from an actual cell, so the membrane has the same (or similar) composition in terms of naturally occurring lipids etc that the cell has. It is therefore a much more complex membrane mixture than a GUV. But it doesn’t contain all the active gubbins of a real live cell, so there are fewer variables with testing GPMVs than there are with real cells.

However, it turns out that creating GPMVs – which are Giant Plasma Membrane Vesicles – are not easy things to create. Dagmara has been using two approaches – oscillation and chemical. Both techniques are tricky and oscillation only seems to work with one cell line. And even where she has been making GPMVs successfully, there are problems with them being ‘leaky’. This is a proper problem as the action of the peptide – as i understand it – is to create pores in the membrane that creates leakiness and causes the cell to expire. If you start with a leaky vesicle, that’s hard to test for.

Nonetheless, we spent a happy hour looking at the GPMVs that she had created from the different cell lines. One of the interesting things for me was not only to see the GPMVs themselves, but also to see the very different appearances of the different cell lines under the microscope.

The mcf10 cell line GPMVs fluorescing through the microscope along with the cells themselves – the GPMVs are the rather fainter spheres,
Au565 cells and GPMV under normal light
The 468 cell line and GPMVs under normal light

So that brings us more or less to the end of the trip. I did also spend a bit of time with Chris and Debbie in the Bexley Wing and Clinical Research Facility looking at the potential spaces for the piece, but will post separately about that.

Overall it was a wonderful, stimulating visit. I am still bursting with ideas for tests and approaches to making the artwork, even though everything has been disrupted by the Coronavirus spread and the lockdown, which, frankly, has made it much harder to focus on this, or indeed anything.